RANCHO CALIFORNIA WATER DISTRICT
RECOMMENDED GROUND WATER PRODUCTION
FISCAL YEAR JULY 1, 2016 THROUGH JUNE 30, 2017

CONTENTS

1.0 EXECUTIVE SUMMARY ... 1

2.0 METHODOLOGY ... 3
 2.1 Review of Historical Records of Ground Water Levels and Production.......................... 3
 2.1.1 Index Wells, Production Wells, and Monitoring Wells... 3
 2.1.2 Review of Hydrographs – Water Level Trends .. 3
 2.2 “Workshop” with RCWD and GEOSCIENCE Personnel.. 4
 2.3 Verification of Recommended Production Using Ground Water Model......................... 4
 2.3.1 Murrieta-Temecula Ground Water Basin Model.. 4
 2.3.2 Model Simulation Run ... 5

3.0 RECOMMENDED GROUND WATER PRODUCTION – 2016-2017 .. 6
 3.1 Pumping Schedule for Wolf Valley Wells .. 6
 3.1.1 Well 211 ... 6
 3.1.2 Wells 119 and 122 .. 6
 3.2 Pumping Schedule for the Southern Murrieta Wells... 7
 3.3 Pumping Schedule for the Northern Murrieta Wells... 8
 3.4 Pumping Schedule for the Upper Pauba Valley Wells ... 8
 3.5 Recommended Production for Fiscal Year 2016-2017 ... 9

4.0 REFERENCES ... 10

FIGURES, TABLES, PLATE, APPENDICES
<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rancho California Water District Well Locations</td>
</tr>
<tr>
<td>2</td>
<td>Hydrologic Subunits and Recommended 2016-2017 Production</td>
</tr>
<tr>
<td>3</td>
<td>Hydrographs of Selected Pauba Wells – Model Simulation Under Recommended 2016-2017 Pumping Conditions</td>
</tr>
<tr>
<td>4</td>
<td>Hydrographs of Selected Temecula Wells – Model Simulation Under Recommended 2016-2017 Pumping Conditions</td>
</tr>
</tbody>
</table>
TABLES

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Recommended Ground Water Production by Hydrologic Subunit – July 1, 2016 to June 30, 2017</td>
</tr>
<tr>
<td>2</td>
<td>Recommended Ground Water Production by Well Number – July 1, 2016 to June 30, 2017</td>
</tr>
<tr>
<td>No.</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Factors Affecting Production Recommendations</td>
</tr>
</tbody>
</table>
APPENDICES

<table>
<thead>
<tr>
<th>Ltr.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Long-Term Hydrographs and Production – January 1981 to September 2015</td>
</tr>
<tr>
<td>B</td>
<td>Short-Term Hydrographs – October 2014 to September 2015</td>
</tr>
<tr>
<td>C</td>
<td>Western Municipal Water District Wells</td>
</tr>
<tr>
<td></td>
<td>Long-Term Hydrographs and Production – January 1981 to September 2015</td>
</tr>
</tbody>
</table>
1.0 EXECUTIVE SUMMARY

The purpose of this yearly audit review is to recommend a ground water production program for fiscal year 2016-2017. The current review was performed using the most current data from the water year ending on September 30, 2015; and, it recommends a ground water production plan for the period from July 1, 2016 through June 30, 2017.

The 2016-2017 fiscal year ground water production recommendations were based primarily on a review of individual well production and historical hydrographs. During the review, ground water level elevations from all production and monitoring wells were considered. Hydrologic subareas and “index wells” representing water level changes in the subarea were used to help formulate a recommendation for production during the 2016-2017 fiscal year. This recommendation also includes input from a “Workshop” held between Rancho California Water District (RCWD) and GEOSCIENCE Support Services, Inc. (GEOSCIENCE) personnel. The workshop included discussions of previous audits, instantaneous yield, natural and artificial recharge, water quality, pump settings, and well construction factors.

Where water level trends in subarea index wells indicate a decline over several years, lower production values have been recommended. Where water level declines have not occurred, and as other factors permitted, recommended production values have been increased. Total recommended production for the period July 1, 2016 through June 30, 2017 is 35,060 acre-ft. The recommended amount of annual production for the wells are consistent with RCWD’s ground water management plan, and were made with consideration given to historical water levels, precipitation, production, and expected natural and artificial recharge. Consideration was also given to the projected production from Western Municipal Water District’s (WMWD) production wells in the northern Murrieta Valley area. As always, in keeping with sound ground water basin management practices, the recommended production should be considered as a guideline only, and is subject to revision as additional data become available.

For the fiscal year 2016-2017, the recommended Upper VDC purchased untreated water recharge is 12,700 acre-ft and, if available, an additional 3,000 acre-ft of local water from Vail Lake releases.
Considering the recommended artificial recharge of purchased untreated water in the upper VDC area of 12,700 acre-ft, the net ground water withdrawal from the basin for the 2016–2017 fiscal year will be 22,360 acre-ft.

Tables 1 and 2 summarize recommended 2016-2017 fiscal year ground water production. Table 1 shows the production recommendations sorted by hydrologic subunit, and Table 2 shows them sorted by RCWD well number. Figure 1 shows both RCWD and WMWD well locations in the Murrieta-Temecula Ground Water Basin. Figure 2 is a general map showing the recommended production for each of the hydrologic subunits. Figures 3 and 4 show the model-predicted water levels for the Pauba and Temecula index wells in each subarea under the recommended 2016-2017 pumping conditions. Plate 1 summarizes the factors that affected the recommendations for each well.
2.0 METHODOLOGY

A ground water audit (water budget review) was performed to evaluate and recommend ground water production levels for the fiscal year July 1, 2016 to June 30, 2017. The underlying philosophy guiding the audit has been, and continues to be, one of sound basin management. This management involves the operation of the ground water basin within safe yield limits so as not to create permanent overdraft (mining) or other undesirable conditions that could degrade water quality or violate legal restrictions. Determination of the amount of ground water hydrologically, economically, and legally available to RCWD is an ongoing process of evaluation and review.

2.1 Review of Historical Records of Ground Water Levels and Production

2.1.1 Index Wells, Production Wells, and Monitoring Wells

In the wellfield optimization study (conducted by GEOSCIENCE in April 1993), the RCWD area was divided into small polygonal areas based on geohydrologic relationships and the relative locations of RCWD production wells (see Figure 1). Numbers were assigned to each subarea for identification purposes. An “index well” was chosen for each polygonal subarea. Index wells reflect changes in water levels in each of the production wells within a subarea. Generally, index wells are non-production monitoring wells having several years of historical water level data. When these criteria could not be met, a production well which best reflected water level changes in the subarea was chosen as an index well.

Multiple regression analyses were conducted for each polygonal subarea based on index well monthly water levels, production well monthly water levels, monthly production, and monthly precipitation in the area (Temecula Station). Long-term (i.e. January 1981 to September 2015) and short-term (i.e., October 2014 to September 2015) water level changes in each index well were then used to determine the water level trends for the corresponding subarea.

2.1.2 Review of Hydrographs – Water Level Trends

January 1981 to September 2015 was designated as the period for long-term water level trend analysis (see Appendix A), and October 2014 to September 2015 was designated as the period for short-term water level trend analysis (see Appendix B). Historical water levels and production were also plotted for the WMWD wells in the northern Murrieta Valley area (see Appendix C).

The recommended production values for fiscal year 2016-2017 were first estimated based on water level trends and historical production within each subarea. Where water level trends in production
wells and index wells indicated a decline over several years, lower production values have been recommended. Where water level declines have not occurred, recommended production values may have been increased contingent on other constraints (e.g., water quality, mechanical or legal).

2.2 “Workshop” with RCWD and GEOSCIENCE Personnel

The purpose of the “Workshop” between RCWD and GEOSCIENCE personnel (held on December 9, 2015) was to discuss initially recommended production levels and specific problems on a well-by-well basis. For each well, the instantaneous yield, static submergence, pump lowering potential, long- and short-term water level trends, water quality, construction, litigation, and air problems were discussed and tabulated. Plate 1 summarizes factors affecting the recommended production for each well. The initial production recommendations were revised based on the well-by-well factors as discussed in the Workshop.

2.3 Verification of Recommended Production Using Ground Water Model

The recommended ground water production was verified using the updated surface and ground water model of the Murrieta-Temecula Ground Water Basin (GEOSCIENCE, 2014). In addition, the amount of upper VDC (Valle De Los Caballos) purchased untreated water recharge required to maintain the water levels in the upper Pauba Valley area was also estimated using the model. The Murrieta-Temecula Ground Water Basin model simulated the changes in water levels for a two-year period from October 2015 to September 2017 under the recommended 2016-2017 production conditions.

2.3.1 Murrieta-Temecula Ground Water Basin Model

The surface and ground water model of the Murrieta-Temecula Ground Water Basin (GEOSCIENCE, 2003) was first developed between 1995 and 1999 as a cooperative technical effort involving representatives of Camp Pendleton and the RCWD, their respective consultants (Stetson and GEOSCIENCE), their respective legal advisors, the Santa Margarita River Watermaster, and the US Geologic Survey. The model was updated to fulfill the requirement of the March 26, 2002 Cooperative Water Resources Management Agreement. Based on the review of the types of surface water models, the Technical Advisory Committee (TAC) decided to use GSFLOW modeling software, which uses an integrated surface water model (PRMS) and ground water model (MODFLOW-2005), to account for the surface water recharge within the model boundary. The Murrieta-Temecula Ground Water Basin Model boundary was expanded during the refinement process in order to incorporate the PRMS watershed for the purpose of integrating the PRMS and MODFLOW components. The model grid covers an area of approximately 551 square miles (352,617 acres) with a uniform finite-difference grid consisting of 300 rows in the north to south direction and 320 columns in the west to east direction for a
total of 96,000 cells per layer, or 480,000 cells total. Each model cell of the Murrieta-Temecula Ground Water Basin Model represents an area of 400 feet by 400 feet (GEOSCIENCE, 2014). Originally, the model cell size varied from 600 feet by 600 feet up to 5,000 feet by 5,000 feet. The refined model cell size allows for a more accurate description of the location of model features.

2.3.2 Model Simulation Run

The model run was simulated for a period of two years from October 2015 through September 2017 with an Upper VDC recharge of 15,700 acre-ft/yr (12,700 acre-ft/yr from purchased untreated water and 3,000 acre-ft/yr from Vail Lake releases). Ground water pumping was based on the 2016-2017 recommended production. Geohydrologic parameters such as hydraulic conductivity, storativity, leakance, fault conductance, and streambed conductance were based on values from the updated model. Precipitation was based on the average of the selected hydrologic base period from 1983 to 2007. This base period covers both wet and dry hydrologic cycles, and the average precipitation is approximately the same as the long-term average.

Results are shown as hydrographs (water level changes over time) of selected wells in the area. Figures 3 and 4 show the model-predicted water levels for the Pauba and Temecula index wells in each subarea under the recommended 2016-2017 pumping conditions and a VDC recharge of 15,700 acre-ft/yr (12,700 acre-ft/yr from purchased untreated water and 3,000 acre-ft/yr from Vail Lake releases). As shown in these hydrographs, operation of the ground water basin under the recommended 2016-2017 pumping conditions and a VDC recharge of 12,700 acre-ft/yr from purchased untreated water will not create a permanent overdraft condition or degrade water quality. The net withdrawal of ground water from the basin is 22,360 acre-ft (35,060 acre-ft pumping less 12,700 acre-ft of artificial recharge from purchased untreated water in the Upper VDC area).
3.0 RECOMMENDED GROUND WATER PRODUCTION – 2016-2017

3.1 Pumping Schedule for Wolf Valley Wells

3.1.1 Well 211

In order to monitor the aquifer compression/rebound under pumping conditions in the Wolf Valley area, ground water production at Wolf Valley Well 211 was recommenced in July 1994. During the fiscal year 1994-1995, Well 211 produced on odd days between the hours of midnight and 6:00 AM at a pumping rate of approximately 1,500 gallons per minute (gpm) to 2,000 gpm. In fiscal year 1995-1996, an increased pumping schedule was recommended for the Wolf Valley Well 211. Well 211 then produced approximately 1,500 gpm to 2,000 gpm on odd days between midnight and noon. This schedule yielded an annual production of approximately 600 acre-ft from Well 211. In fiscal year 1996-1997, the pumping schedule for Well 211 was identical to its 1995-1996 pumping schedule. In fiscal year 1997-1998, Well 211 produced on odd days between the hours of midnight and 4:00 PM. In fiscal year 1998-1999 Well 211 was pumped at a rate of approximately 1,500 gpm to 2,000 gpm on odd days beginning at midnight and ending after 24 hours. This schedule yielded an annual production of approximately 1,200 acre-ft. For the water years 1999-2000, 2000-2001, and 2001-2002, Well 211 was pumped at a rate of approximately 2,000 gpm on odd days beginning at midnight and continuing for 24 hours. Actual annual production amounts for water years 1999-2000, 2000-2001, and 2001-2002 for Well 211 were approximately 1,628 acre-ft, 1,420 acre-ft and 1,358 acre-ft, respectively.

3.1.2 Wells 119 and 122

In fiscal year 1996-1997, Well 119 was initially turned on during even days of the month between the hours of 6:00 AM and noon, at a pumping rate of approximately 500 gpm. This schedule yielded a production of approximately 500 acre-ft. Well 122 was left idle in fiscal year 1996-1997. In the fiscal year 1997-1998, an increased annual production of 750 acre-ft and 500 acre-ft was recommended for Wells 119 and 122, respectively. Production for Well 119 was increased in fiscal years 1998-1999 and 1999-2000.
In the fiscal years 2000-2001 through 2013-2014, annual production for Well 122 ranged from 287 acre-ft to 1,496 acre-ft. During these same fiscal years, annual production for Well 119 ranged from 377 acre-ft to 1,588 acre-ft.

For fiscal year 2016-2017, a production of 400 acre-ft for each well (Well 119 and Well 122) is recommended. However, the recommended production should be considered as a guideline only, and is subject to revision as additional data become available.

In order to determine future pumping schedules for Wells 119 and 122, the following will be monitored:

1) Water levels in Well 119 and Well 122;
2) Aquifer compression/rebound in Extensometer Well EW-4; and
3) Ground surface changes at the survey network located in Wolf Valley.

3.2 Pumping Schedule for the Southern Murrieta Wells

On April 1, 1992, in order to monitor aquifer compression/rebound under pumping conditions, RCWD reactivated the four southern Murrieta wells (101, 102, 118, and 121). The duration of pumping for the program’s first phase was eight hours per day with only two wells operating at the same time. Since the 1995-1996 fiscal year, pumping of the southern Murrieta wells has been according to the program’s planned second phase schedule. This second phase schedule pumps two wells at a time for 16 hours per day, every other day. This increased pumping program and the corresponding monitoring program produced data that conclusively showed no occurrence of non-recoverable aquifer compaction. These data also indicate that the compression and rebound of this aquifer is closely related to ground water pumping. Continued monitoring and analysis of these aquifers will prevent the occurrence of future problems.

Actual annual production amounts for fiscal years 2001-2002 through 2014-2015 from these southern Murrieta wells ranged from 272 acre-ft to 1,927 acre-ft; during fiscal year 2014-2015, production from Well 121 was 0 acre-ft.

For fiscal year 2016-2017, the recommended annual production amounts for Wells 101, 102, 118, and 121 are 0 acre-ft, 1,000 acre-ft, 0 acre-ft, and 0 acre-ft, respectively. In accordance with this schedule, the total annual production from the southern Murrieta wells for the fiscal year 2016-2017 will be approximately 1,000 acre-ft. As always, and in keeping with sound ground water basin management practices, the recommended production should be considered as a guideline only and is subject to revision.
3.3 Pumping Schedule for the Northern Murrieta Wells

In fiscal year 2006-2007, RCWD Wells (135, 144, 145, 146, and 155) in the Northern Murrieta Valley produced approximately 1,465 acre-ft of water. In fiscal year 2007-2008, these wells produced 1,323 acre-ft. In fiscal year 2007-2008, Well 156 was activated and produced 396 acre-ft of water. The total water produced from the Northern Murrieta Valley by RCWD wells in fiscal year 2007-2008 was 1,719 acre-ft. During the same period of time, the WMWD wells in the area produced a total of about 410 acre-ft. The total pumping from the RCWD and WMWD in the Northern Murrieta area was 2,129 acre-ft in fiscal year 2007-2008. For fiscal year 2008-2009, the total pumping from RCWD and WMWD was 2,310 acre-ft and 751 acre-ft, respectively. In fiscal year 2009-2010, the total pumping from RCWD and WMWD in the Northern Murrieta area was 2,173 acre-ft and 886 acre-ft, respectively. For fiscal year 2010-2011, the total pumping from RCWD and WMWD was 1,981 acre-ft and 467 acre-ft, respectively. In fiscal year 2011-2012, the total pumping from RCWD and WMWD was 1,784 acre-ft and 678 acre-ft, respectively. For fiscal year 2013-2014, the total pumping from RCWD and WMWD was 2,041 acre-ft and 951 acre-ft, respectively. For fiscal year 2014-2015, the total pumping from RCWD and WMWD wells was 1,457 acre-ft, and 1,041 acre-ft, respectively. For fiscal year 2016-2017, the recommended production for RCWD Wells 135, 144, 145, 146, 155, and 156 is 25 acre-ft, 400 acre-ft, 350 acre-ft, 20 acre-ft, 15 acre-ft, and 700 acre-ft, respectively, for a total recommended production of RCWD is approximately 1,510 acre-ft from the Northern Murrieta wells.

3.4 Pumping Schedule for the Upper Pauba Valley Wells

Approximately 12,255 acre-ft of water was recharged in the VDC recharge basin area between July 2014 and June 2015. For the fiscal year 2015-2016, the recommended Upper VDC purchased untreated water recharge is 12,700 acre-ft and, if available, an additional 3,000 acre-ft local water from Vail Lake releases. In order to optimize the recharge and recovery operations for the Upper VDC recharge facility, Wells 152, 153, 154, 157, and 158 should be turned on. During the fiscal years 2005-2006 through 2014-2015 the total production for these recovery wells ranged from 6,200 acre-ft to 8,685 acre-ft. For the fiscal year 2016-2017, the total recommended production for these wells is approximately 8,100 acre-ft.

In addition, production from Wells 164\(^1\), 132, 210\(^2\), and 233 should be maintained at a high level, creating a “pumping depression” to maximize VDC recharge capabilities. For fiscal years 2005-2006 through 2014-2015, total production for these four Upper Pauba Valley wells ranged from 2,277 acre-ft

\(^1\) Well 110 was destroyed and replaced in 2015, and has been renamed as Well 164.
\(^2\) Well 210 is scheduled to be destroyed and replaced in 2016.
to 5,198 acre-ft. For fiscal year 2016-2017, the total recommended production for these four Upper Pauba Valley wells is 2,600 acre-ft.

3.5 Recommended Production for Fiscal Year 2016-2017

The final recommended production values for each well during fiscal year 2016-2017 are shown in Tables 1 and 2 (by Hydrologic Unit and well number, respectively). The locations of the wells are shown on Figure 1. Recommended production amounts are also shown graphically by hydrologic subunit on Figure 2. The total recommended production for the period from July 1, 2016 through June 30, 2017 is 35,060 acre-ft, which will be produced from 46 wells.³ Considering the recommended artificial recharge of purchased untreated water in the Upper VDC area of 12,700 acre-ft, the net groundwater withdrawal from the basin for the 2016–2017 fiscal year will be approximately 22,360 acre-ft.

³ RCWD has a total of 54 production wells; however, some wells are not intended to be operated during the 2016-2017 fiscal year. Refer to Plate 1 for detailed information on each of the wells.
4.0 REFERENCES

FIGURES
Well Classification

- Pauba Aquifer Production Well
- Temecula Aquifer Production Well
- Combined Aquifer Production Well
- Temecula Aquifer Production Well Also Used As Index Well
- Temecula Aquifer Index Well
- Pauba Aquifer Index Well
- Monitoring and Non-Production Well
- Western Municipal Water District Well Location

Well Designation

- RCWD Boundary
- Fault - Confirmed
- Fault - Approximate
- Fault - Concealed

Hydrologic Subunit Boundary

- Lower Mesa Subunit
- N. Murrieta Valley Subunit
- Palomar Subunit
- Pauba Valley Subunit
- S. Murrieta Valley Subunit
- Santa Gertrudis Subunit
- South Mesa Subunit
- Upper Mesa Subunit
- Wolf Valley Subunit

Index Well Subarea Number

Notes:
1. Well 161 is a new Pauba Aquifer well.
2. Existing Wells 210, 215, and 216 are to be replaced in 2016.

Figure 1
RECOMMENDED GROUND WATER PRODUCTION
FISCAL YEAR JULY 1, 2016 THROUGH JUNE 30, 2017

HISTORIC GROUND WATER PRODUCTION
1972 - 2016

HYDROLOGIC SUBUNITS AND RECOMMENDED 2016 - 2017 PRODUCTION

Recommended 2016 - 2017 Production (acre-ft/yr)

Total Recommended 2016 - 2017 Production = 35,060 acre-ft

EXPLANATION

1,600
 Recommended 2016 - 2017 Production (acre-ft/yr)

ROWD Boundary

Fault - Confirmed

Fault - Approximate

Fault - Concealed

Hydrologic Subunit Boundary

Lower Mesa Subunit

N. Murrieta Valley Subunit

Palomar Subunit

Pauba Valley Subunit

S. Murrieta Valley Subunit

Santa Gertrudis Subunit

South Mesa Subunit

Upper Mesa Subunit

Wolf Valley Subunit

Total Recommended 2016 - 2017 Production = 35,060 acre-ft

GIS_proj/rcwd_wtr_audit_2016-2017/0_Fig_2_audit16-17_hydrounits_1-16.mxd

RECOMMENDED GROUND WATER PRODUCTION FISCAL YEAR JULY 1, 2016 THROUGH JUNE 30, 2017

EXPLANATION

1,600
 Recommended 2016 - 2017 Production (acre-ft/yr)

ROWD Boundary

Fault - Confirmed

Fault - Approximate

Fault - Concealed

Hydrologic Subunit Boundary

Lower Mesa Subunit

N. Murrieta Valley Subunit

Palomar Subunit

Pauba Valley Subunit

S. Murrieta Valley Subunit

Santa Gertrudis Subunit

South Mesa Subunit

Upper Mesa Subunit

Wolf Valley Subunit

Total Recommended 2016 - 2017 Production = 35,060 acre-ft

GIS_proj/rcwd_wtr_audit_2016-2017/0_Fig_2_audit16-17_hydrounits_1-16.mxd

GEOSCIENCE
GEOSCIENCE Support Services, Inc.
P.O. Box 220, Claremont, CA 91711
Tel: (909) 451-6650 Fax: (909) 451-6638
www.gssiwater.com

Prepared by: DB
Map Projection: State Plane 1983, Zone VI

© 2016, GEOSCIENCE Support Services, Inc. All rights reserved.

20-Jan-16

2016, GEOSCIENCE Support Services, Inc. All rights reserved.
Recommended Ground Water Production by Hydrologic Subunit

July 1, 2016 to June 30, 2017

<table>
<thead>
<tr>
<th>RCWD Well No.</th>
<th>Hydrologic Subunit</th>
<th>Aquifer</th>
<th>July 1, 2016 - June 30, 2017 Recommended Production [Acre-ft]</th>
</tr>
</thead>
<tbody>
<tr>
<td>135</td>
<td>N. Murrieta Valley</td>
<td>Temecula</td>
<td>25</td>
</tr>
<tr>
<td>144</td>
<td>N. Murrieta Valley</td>
<td>Temecula</td>
<td>400</td>
</tr>
<tr>
<td>145</td>
<td>N. Murrieta Valley</td>
<td>Temecula</td>
<td>350</td>
</tr>
<tr>
<td>155</td>
<td>N. Murrieta Valley</td>
<td>Temecula</td>
<td>20</td>
</tr>
<tr>
<td>156</td>
<td>N. Murrieta Valley</td>
<td>Temecula</td>
<td>700</td>
</tr>
</tbody>
</table>

Subtotal **1,495**

| 146 | N. Murrieta Valley | Pauba | 15 |

Subtotal **15**

101	S. Murrieta Valley	Temecula	0
102	S. Murrieta Valley	Temecula	1,000
118	S. Murrieta Valley	Temecula	0
121	S. Murrieta Valley	Temecula	0

Subtotal **1,000**

| 122 | Wolf Valley | Temecula| 400 |
| 211 | Wolf Valley | Temecula| 400 |

Subtotal **800**

| 119 | Wolf Valley | Pauba | 400 |

Subtotal **400**

| 205 | Santa Gertrudis | Temecula| 1,600 |
| 309 | Santa Gertrudis | Temecula| 2,000 |

Subtotal **3,600**

| 106 | Santa Gertrudis | Combined| 100 |
| 108 | Santa Gertrudis | Combined| 600 |

Subtotal **700**

Table 1

GEOSCIENCE Support Services, Inc.
Recommended Ground Water Production by Hydrologic Subunit

July 1, 2016 to June 30, 2017

<table>
<thead>
<tr>
<th>RCWD Well No.</th>
<th>Hydrologic Subunit</th>
<th>Aquifer</th>
<th>July 1, 2016 - June 30, 2017 Recommended Production [Acre-ft]</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>Lower Mesa</td>
<td>Temecula</td>
<td>0</td>
</tr>
<tr>
<td>129</td>
<td>Lower Mesa</td>
<td>Temecula</td>
<td>0</td>
</tr>
<tr>
<td>138</td>
<td>Lower Mesa</td>
<td>Temecula</td>
<td>2,000</td>
</tr>
<tr>
<td>139</td>
<td>Lower Mesa</td>
<td>Temecula</td>
<td>900</td>
</tr>
<tr>
<td>140</td>
<td>Lower Mesa</td>
<td>Temecula</td>
<td>800</td>
</tr>
<tr>
<td>216**</td>
<td>Lower Mesa</td>
<td>Temecula</td>
<td>0</td>
</tr>
<tr>
<td>235</td>
<td>Lower Mesa</td>
<td>Temecula</td>
<td>900</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td>4,600</td>
</tr>
<tr>
<td>151</td>
<td>Upper Mesa</td>
<td>Temecula</td>
<td>750</td>
</tr>
<tr>
<td>215**</td>
<td>Upper Mesa</td>
<td>Temecula</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td>1,050</td>
</tr>
<tr>
<td>120</td>
<td>Pauba</td>
<td>Temecula</td>
<td>1,300</td>
</tr>
<tr>
<td>124</td>
<td>Pauba</td>
<td>Temecula</td>
<td>300</td>
</tr>
<tr>
<td>125</td>
<td>Pauba</td>
<td>Temecula</td>
<td>0</td>
</tr>
<tr>
<td>126</td>
<td>Pauba</td>
<td>Temecula</td>
<td>700</td>
</tr>
<tr>
<td>130</td>
<td>Pauba</td>
<td>Temecula</td>
<td>1,000</td>
</tr>
<tr>
<td>131</td>
<td>Pauba</td>
<td>Temecula</td>
<td>1,000</td>
</tr>
<tr>
<td>133</td>
<td>Pauba</td>
<td>Temecula</td>
<td>350</td>
</tr>
<tr>
<td>143</td>
<td>Pauba</td>
<td>Temecula</td>
<td>700</td>
</tr>
<tr>
<td>149</td>
<td>Pauba</td>
<td>Temecula</td>
<td>200</td>
</tr>
<tr>
<td>203</td>
<td>Pauba</td>
<td>Temecula</td>
<td>550</td>
</tr>
<tr>
<td>217</td>
<td>Pauba</td>
<td>Temecula</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td>6,800</td>
</tr>
</tbody>
</table>
Recommended Ground Water Production by Hydrologic Subunit
July 1, 2016 to June 30, 2017

<table>
<thead>
<tr>
<th>RCWD Well No.</th>
<th>Hydrologic Subunit</th>
<th>Aquifer</th>
<th>July 1, 2016 - June 30, 2017 Recommended Production [Acre-ft]</th>
</tr>
</thead>
<tbody>
<tr>
<td>109</td>
<td>Pauba</td>
<td>Pauba</td>
<td>500</td>
</tr>
<tr>
<td>164</td>
<td>Pauba</td>
<td>Pauba</td>
<td>1,000</td>
</tr>
<tr>
<td>141</td>
<td>Pauba</td>
<td>Pauba</td>
<td>500</td>
</tr>
<tr>
<td>152</td>
<td>Pauba</td>
<td>Pauba</td>
<td>2,200</td>
</tr>
<tr>
<td>153</td>
<td>Pauba</td>
<td>Pauba</td>
<td>1,800</td>
</tr>
<tr>
<td>154</td>
<td>Pauba</td>
<td>Pauba</td>
<td>600</td>
</tr>
<tr>
<td>157</td>
<td>Pauba</td>
<td>Pauba</td>
<td>1,600</td>
</tr>
<tr>
<td>158</td>
<td>Pauba</td>
<td>Pauba</td>
<td>1,900</td>
</tr>
<tr>
<td>161*</td>
<td>Pauba</td>
<td>Pauba</td>
<td>1,500</td>
</tr>
<tr>
<td>210**</td>
<td>Pauba</td>
<td>Pauba</td>
<td>600</td>
</tr>
<tr>
<td>231</td>
<td>Pauba</td>
<td>Pauba</td>
<td>0</td>
</tr>
<tr>
<td>233</td>
<td>Pauba</td>
<td>Pauba</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subtotal</td>
<td>12,700</td>
</tr>
<tr>
<td>123</td>
<td>Pauba</td>
<td>Combined</td>
<td>100</td>
</tr>
<tr>
<td>132</td>
<td>Pauba</td>
<td>Combined</td>
<td>500</td>
</tr>
<tr>
<td>232</td>
<td>Pauba</td>
<td>Combined</td>
<td>900</td>
</tr>
<tr>
<td>234</td>
<td>Pauba</td>
<td>Combined</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subtotal</td>
<td>1,600</td>
</tr>
<tr>
<td>113</td>
<td>Palomar</td>
<td>Temecula</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subtotal</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Recommended Production</td>
<td>35,060</td>
</tr>
</tbody>
</table>

* New well.
** Existing well scheduled for replacement in 2016.
Recommended Ground Water Production by Well Number

July 1, 2016 to June 30, 2017

<table>
<thead>
<tr>
<th>RCWD Well No.</th>
<th>Hydrologic Subunit</th>
<th>Aquifer</th>
<th>July 2016 - June 2017 Recommended Production [Acre-ft]</th>
<th>Long-Term Hydrograph Located In Appendix A Page Number</th>
<th>Short Term Hydrograph Located In Appendix B Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>S. Murrieta Valley</td>
<td>Temecula</td>
<td>0</td>
<td>A-1</td>
<td>B-1</td>
</tr>
<tr>
<td>102</td>
<td>S. Murrieta Valley</td>
<td>Temecula</td>
<td>1,000</td>
<td>A-2</td>
<td>B-2</td>
</tr>
<tr>
<td>106</td>
<td>Santa Gertrudis</td>
<td>Combined</td>
<td>100</td>
<td>A-3</td>
<td>B-3</td>
</tr>
<tr>
<td>108</td>
<td>Santa Gertrudis</td>
<td>Combined</td>
<td>600</td>
<td>A-4</td>
<td>B-4</td>
</tr>
<tr>
<td>109</td>
<td>Pauba</td>
<td>Pauba</td>
<td>500</td>
<td>A-5</td>
<td>B-5</td>
</tr>
<tr>
<td>113</td>
<td>Palomar</td>
<td>Temecula</td>
<td>300</td>
<td>A-7</td>
<td>B-7</td>
</tr>
<tr>
<td>118</td>
<td>S. Murrieta Valley</td>
<td>Temecula</td>
<td>0</td>
<td>A-8</td>
<td>B-8</td>
</tr>
<tr>
<td>119</td>
<td>Wolf Valley</td>
<td>Pauba</td>
<td>400</td>
<td>A-9</td>
<td>B-9</td>
</tr>
<tr>
<td>120</td>
<td>Pauba</td>
<td>Temecula</td>
<td>1,300</td>
<td>A-10</td>
<td>B-10</td>
</tr>
<tr>
<td>121</td>
<td>S. Murrieta Valley</td>
<td>Temecula</td>
<td>0</td>
<td>A-11</td>
<td>B-11</td>
</tr>
<tr>
<td>122</td>
<td>Wolf Valley</td>
<td>Temecula</td>
<td>400</td>
<td>A-12</td>
<td>B-12</td>
</tr>
<tr>
<td>123</td>
<td>Pauba</td>
<td>Combined</td>
<td>100</td>
<td>A-13</td>
<td>B-13</td>
</tr>
<tr>
<td>124</td>
<td>Pauba</td>
<td>Temecula</td>
<td>300</td>
<td>A-14</td>
<td>B-14</td>
</tr>
<tr>
<td>125</td>
<td>Pauba</td>
<td>Temecula</td>
<td>0</td>
<td>A-15</td>
<td>B-15</td>
</tr>
<tr>
<td>126</td>
<td>Pauba</td>
<td>Temecula</td>
<td>700</td>
<td>A-16</td>
<td>B-16</td>
</tr>
<tr>
<td>128</td>
<td>Lower Mesa</td>
<td>Temecula</td>
<td>0</td>
<td>A-17</td>
<td>B-17</td>
</tr>
<tr>
<td>129</td>
<td>Lower Mesa</td>
<td>Temecula</td>
<td>0</td>
<td>A-18</td>
<td>B-18</td>
</tr>
<tr>
<td>130</td>
<td>Pauba</td>
<td>Temecula</td>
<td>1,000</td>
<td>A-19</td>
<td>B-19</td>
</tr>
<tr>
<td>131</td>
<td>Pauba</td>
<td>Temecula</td>
<td>1,000</td>
<td>A-20</td>
<td>B-20</td>
</tr>
<tr>
<td>132</td>
<td>Pauba</td>
<td>Combined</td>
<td>500</td>
<td>A-21</td>
<td>B-21</td>
</tr>
<tr>
<td>133</td>
<td>Pauba</td>
<td>Temecula</td>
<td>350</td>
<td>A-22</td>
<td>B-22</td>
</tr>
<tr>
<td>135</td>
<td>N. Murrieta Valley</td>
<td>Temecula</td>
<td>25</td>
<td>A-23</td>
<td>B-23</td>
</tr>
<tr>
<td>138</td>
<td>Lower Mesa</td>
<td>Temecula</td>
<td>2,000</td>
<td>A-24</td>
<td>B-24</td>
</tr>
<tr>
<td>139</td>
<td>Lower Mesa</td>
<td>Temecula</td>
<td>900</td>
<td>A-25</td>
<td>B-25</td>
</tr>
<tr>
<td>140</td>
<td>Lower Mesa</td>
<td>Temecula</td>
<td>800</td>
<td>A-26</td>
<td>B-26</td>
</tr>
<tr>
<td>141</td>
<td>Pauba</td>
<td>Pauba</td>
<td>500</td>
<td>A-27</td>
<td>B-27</td>
</tr>
<tr>
<td>143</td>
<td>Pauba</td>
<td>Temecula</td>
<td>700</td>
<td>A-28</td>
<td>B-28</td>
</tr>
<tr>
<td>144</td>
<td>N. Murrieta Valley</td>
<td>Temecula</td>
<td>400</td>
<td>A-29</td>
<td>B-29</td>
</tr>
</tbody>
</table>
Recommended Ground Water Production by Well Number

July 1, 2016 to June 30, 2017

<table>
<thead>
<tr>
<th>RCWD Well No.</th>
<th>Hydrologic Subunit</th>
<th>Aquifer</th>
<th>July 2016 - June 2017 Recommended Production [Acre-ft]</th>
<th>Long-Term Hydrograph Located In Appendix A Page Number</th>
<th>Short Term Hydrograph Located In Appendix B Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>145</td>
<td>N. Murrieta Valley</td>
<td>Temecula</td>
<td>350</td>
<td>A-30</td>
<td>B-30</td>
</tr>
<tr>
<td>146</td>
<td>N. Murrieta Valley</td>
<td>Pauba</td>
<td>15</td>
<td>A-31</td>
<td>B-31</td>
</tr>
<tr>
<td>149</td>
<td>Pauba</td>
<td>Temecula</td>
<td>200</td>
<td>A-32</td>
<td>B-32</td>
</tr>
<tr>
<td>151</td>
<td>Upper Mesa</td>
<td>Temecula</td>
<td>750</td>
<td>A-33</td>
<td>B-33</td>
</tr>
<tr>
<td>152</td>
<td>Pauba</td>
<td>Pauba</td>
<td>2,200</td>
<td>A-34</td>
<td>B-34</td>
</tr>
<tr>
<td>153</td>
<td>Pauba</td>
<td>Pauba</td>
<td>1,800</td>
<td>A-35</td>
<td>B-35</td>
</tr>
<tr>
<td>154</td>
<td>Pauba</td>
<td>Pauba</td>
<td>600</td>
<td>A-36</td>
<td>B-36</td>
</tr>
<tr>
<td>155</td>
<td>N. Murrieta Valley</td>
<td>Temecula</td>
<td>20</td>
<td>A-37</td>
<td>B-37</td>
</tr>
<tr>
<td>156</td>
<td>N. Murrieta Valley</td>
<td>Temecula</td>
<td>700</td>
<td>A-38</td>
<td>B-38</td>
</tr>
<tr>
<td>157</td>
<td>Pauba</td>
<td>Pauba</td>
<td>1,600</td>
<td>A-39</td>
<td>B-39</td>
</tr>
<tr>
<td>158</td>
<td>Pauba</td>
<td>Pauba</td>
<td>1,900</td>
<td>A-40</td>
<td>B-40</td>
</tr>
<tr>
<td>161*</td>
<td>Pauba</td>
<td>Pauba</td>
<td>1,500</td>
<td>NA - New Well</td>
<td>NA - New Well</td>
</tr>
<tr>
<td>164</td>
<td>Pauba</td>
<td>Pauba</td>
<td>1,000</td>
<td>A-6</td>
<td>NA</td>
</tr>
<tr>
<td>203</td>
<td>Pauba</td>
<td>Temecula</td>
<td>550</td>
<td>A-41</td>
<td>B-41</td>
</tr>
<tr>
<td>205</td>
<td>Santa Gertrudis</td>
<td>Temecula</td>
<td>1,600</td>
<td>A-42</td>
<td>B-42</td>
</tr>
<tr>
<td>210**</td>
<td>Pauba</td>
<td>Pauba</td>
<td>600</td>
<td>A-43</td>
<td>B-43</td>
</tr>
<tr>
<td>211</td>
<td>Wolf Valley</td>
<td>Temecula</td>
<td>400</td>
<td>A-44</td>
<td>B-44</td>
</tr>
<tr>
<td>215**</td>
<td>Upper Mesa</td>
<td>Temecula</td>
<td>300</td>
<td>A-45</td>
<td>B-45</td>
</tr>
<tr>
<td>216**</td>
<td>Lower Mesa</td>
<td>Temecula</td>
<td>0</td>
<td>A-46</td>
<td>B-46</td>
</tr>
<tr>
<td>217</td>
<td>Pauba</td>
<td>Temecula</td>
<td>700</td>
<td>A-47</td>
<td>B-47</td>
</tr>
<tr>
<td>231</td>
<td>Pauba</td>
<td>Pauba</td>
<td>0</td>
<td>A-48</td>
<td>B-48</td>
</tr>
<tr>
<td>232</td>
<td>Pauba</td>
<td>Combined</td>
<td>900</td>
<td>A-49</td>
<td>B-49</td>
</tr>
<tr>
<td>233</td>
<td>Pauba</td>
<td>Pauba</td>
<td>500</td>
<td>A-50</td>
<td>B-50</td>
</tr>
<tr>
<td>234</td>
<td>Pauba</td>
<td>Combined</td>
<td>100</td>
<td>A-51</td>
<td>B-51</td>
</tr>
<tr>
<td>235</td>
<td>Lower Mesa</td>
<td>Temecula</td>
<td>900</td>
<td>A-52</td>
<td>B-52</td>
</tr>
<tr>
<td>309</td>
<td>Santa Gertrudis</td>
<td>Temecula</td>
<td>2,000</td>
<td>A-55</td>
<td>B-55</td>
</tr>
</tbody>
</table>

* New well.

** Existing well scheduled for replacement in 2016.

** Total Recommended Production ** 35,060 ** 0 ** 0 **
Factors Affecting Production Recommendations

Plate 1

<table>
<thead>
<tr>
<th>Hydrologic Subunit</th>
<th>Aquifer</th>
<th>RCWD Well No.</th>
<th>Hydrologic Subunit</th>
<th>Interceptions (ft)</th>
<th>State Category</th>
<th>Learning Potential</th>
<th>Start Stop</th>
<th>Air Currents</th>
<th>Comments</th>
<th>Production from Opt</th>
<th>Total</th>
<th>GEOSCIENCE Recommendation</th>
<th>2016-17</th>
<th>2015-16</th>
<th>2016-17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totals</td>
<td></td>
<td>23,272</td>
<td>38,166</td>
<td>2016-17</td>
<td>2015-16</td>
<td>2016-17</td>
</tr>
</tbody>
</table>

Notes:
- AIR CONDITIONS: Air conditioning units in parentheses.
- Comments: Information provided by RCWD.
- Remarks: Remarks by RCWD.
- Production from Opt: Production from optimal conditions.
- Total: Total production from all wells.
- GEOSCIENCE Recommendation: Recommendations for optimal production.

Production Summary

<table>
<thead>
<tr>
<th>Hydrologic Subunit</th>
<th>Aquifer</th>
<th>RCWD Well No.</th>
<th>Hydrologic Subunit</th>
<th>Interceptions (ft)</th>
<th>State Category</th>
<th>Learning Potential</th>
<th>Start Stop</th>
<th>Air Currents</th>
<th>Comments</th>
<th>Production from Opt</th>
<th>Total</th>
<th>GEOSCIENCE Recommendation</th>
<th>2016-17</th>
<th>2015-16</th>
<th>2016-17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totals</td>
<td></td>
<td>23,272</td>
<td>38,166</td>
<td>2016-17</td>
<td>2015-16</td>
<td>2016-17</td>
</tr>
</tbody>
</table>

Production Data

<table>
<thead>
<tr>
<th>Hydrologic Subunit</th>
<th>Aquifer</th>
<th>RCWD Well No.</th>
<th>Hydrologic Subunit</th>
<th>Interceptions (ft)</th>
<th>State Category</th>
<th>Learning Potential</th>
<th>Start Stop</th>
<th>Air Currents</th>
<th>Comments</th>
<th>Production from Opt</th>
<th>Total</th>
<th>GEOSCIENCE Recommendation</th>
<th>2016-17</th>
<th>2015-16</th>
<th>2016-17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totals</td>
<td></td>
<td>23,272</td>
<td>38,166</td>
<td>2016-17</td>
<td>2015-16</td>
<td>2016-17</td>
</tr>
</tbody>
</table>

Proposed Recommendations

<table>
<thead>
<tr>
<th>Hydrologic Subunit</th>
<th>Aquifer</th>
<th>RCWD Well No.</th>
<th>Hydrologic Subunit</th>
<th>Interceptions (ft)</th>
<th>State Category</th>
<th>Learning Potential</th>
<th>Start Stop</th>
<th>Air Currents</th>
<th>Comments</th>
<th>Production from Opt</th>
<th>Total</th>
<th>GEOSCIENCE Recommendation</th>
<th>2016-17</th>
<th>2015-16</th>
<th>2016-17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totals</td>
<td></td>
<td>23,272</td>
<td>38,166</td>
<td>2016-17</td>
<td>2015-16</td>
<td>2016-17</td>
</tr>
</tbody>
</table>

Additional Notes:
- Air Conditioned: Air conditioning units in parentheses.
- Production from Opt: Production from optimal conditions.
- Total: Total production from all wells.
- GEOSCIENCE Recommendation: Recommendations for optimal production.

Production Summary

<table>
<thead>
<tr>
<th>Hydrologic Subunit</th>
<th>Aquifer</th>
<th>RCWD Well No.</th>
<th>Hydrologic Subunit</th>
<th>Interceptions (ft)</th>
<th>State Category</th>
<th>Learning Potential</th>
<th>Start Stop</th>
<th>Air Currents</th>
<th>Comments</th>
<th>Production from Opt</th>
<th>Total</th>
<th>GEOSCIENCE Recommendation</th>
<th>2016-17</th>
<th>2015-16</th>
<th>2016-17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totals</td>
<td></td>
<td>23,272</td>
<td>38,166</td>
<td>2016-17</td>
<td>2015-16</td>
<td>2016-17</td>
</tr>
</tbody>
</table>

Production Data

<table>
<thead>
<tr>
<th>Hydrologic Subunit</th>
<th>Aquifer</th>
<th>RCWD Well No.</th>
<th>Hydrologic Subunit</th>
<th>Interceptions (ft)</th>
<th>State Category</th>
<th>Learning Potential</th>
<th>Start Stop</th>
<th>Air Currents</th>
<th>Comments</th>
<th>Production from Opt</th>
<th>Total</th>
<th>GEOSCIENCE Recommendation</th>
<th>2016-17</th>
<th>2015-16</th>
<th>2016-17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totals</td>
<td></td>
<td>23,272</td>
<td>38,166</td>
<td>2016-17</td>
<td>2015-16</td>
<td>2016-17</td>
</tr>
</tbody>
</table>

Proposed Recommendations

<table>
<thead>
<tr>
<th>Hydrologic Subunit</th>
<th>Aquifer</th>
<th>RCWD Well No.</th>
<th>Hydrologic Subunit</th>
<th>Interceptions (ft)</th>
<th>State Category</th>
<th>Learning Potential</th>
<th>Start Stop</th>
<th>Air Currents</th>
<th>Comments</th>
<th>Production from Opt</th>
<th>Total</th>
<th>GEOSCIENCE Recommendation</th>
<th>2016-17</th>
<th>2015-16</th>
<th>2016-17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totals</td>
<td></td>
<td>23,272</td>
<td>38,166</td>
<td>2016-17</td>
<td>2015-16</td>
<td>2016-17</td>
</tr>
</tbody>
</table>

Notes:
- Air Conditioned: Air conditioning units in parentheses.
- Production from Opt: Production from optimal conditions.
- Total: Total production from all wells.
- GEOSCIENCE Recommendation: Recommendations for optimal production.
APPENDIX A

Long-Term Hydrographs and Production – January 1981 to September 2015
Long-Term Hydrograph and Production - RCWD Well 101
(January 1981 to September 2015)

Ground Water Elevation, ft AMSL

Production

Recommended Production for 2016-2017: 0 acre-ft

Appendix A

GEOSCIENCE Support Services, Inc.
Recommended production for 2016-2017: 1,000 acre-ft
Long-Term Hydrograph and Production - RCWD Well 106
(January 1981 to September 2015)

Recommended production for 2016-2017: 100 acre-ft
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Long-Term Hydrograph and Production - RCWD Well 108
(January 1981 to September 2015)

Recommended production for 2016-2017: 600 acre-ft

Appendix A
Recommended production for 2016-2017: 500 acre-ft
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Long-Term Hydrograph and Production - RCWD Well 110 (164)
(January 1981 to September 2015)

Recommended production for 2016-2017: 1,000 acre-ft
Appendix A

Recommended production for 2016-2017: 300 acre-ft
Recommended production for 2016-2017: 0 acre-ft
Recommended production for 2016-2017: 400 acre-ft

Appendix A
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Long-Term Hydrograph and Production - RCWD Well 120
(January 1981 to September 2015)

Probable production for 2016-2017: 1,300 acre-ft

Appendix A
Recommended production for 2016-2017: 0 acre-ft
Long-Term Hydrograph and Production - RCWD Well 122
(January 1981 to September 2015)

Recommended production for 2016-2017: 400 acre-ft
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Long-Term Hydrograph and Production - RCWD Well 123
(January 1981 to September 2015)

Recommended production for 2016-2017: 100 acre-ft.
Long-Term Hydrograph and Production - RCWD Well 124
(January 1981 to September 2015)

Recommended production for 2016-2017: 300 acre-ft

Appendix A
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Appendix A
Recommended production for 2016-2017: 0 acre-ft

Long-Term Hydrograph and Production - RCWD Well 125
(January 1981 to September 2015)
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Long-Term Hydrograph and Production - RCWD Well 126
(January 1981 to September 2015)

Appendix A

Recommended production for 2016-2017: 700 acre-ft
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Long-Term Hydrograph and Production - RCWD Well 128
(January 1981 to September 2015)

Appendix A

Recommended production for 2016-2017: 0 acre-ft
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Long-Term Hydrograph and Production - RCWD Well 129
(January 1981 to September 2015)

Recommended production for 2016-2017: 0 acre-ft
Recommended production for 2016-2017: 1,000 acre-ft
Long-Term Hydrograph and Production - RCWD Well 131
(County 1981 to September 2015)

Recommended production for 2016-2017: 1,000 acre-ft.
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Long-Term Hydrograph and Production - RCWD Well 132
(January 1981 to September 2015)

Recommended production for 2016-2017: 500 acre-ft
Recommended production for 2016-2017: 350 acre-ft
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Long-Term Hydrograph and Production - RCWD Well 135
(January 1981 to September 2015)

Recommended production for 2016-2017: 25 acre-ft

Appendix A
Long-Term Hydrograph and Production - RCWD Well 138
(January 1981 to September 2015)

Recommended production for 2016-2017: 2,000 acre-ft
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Long-Term Hydrograph and Production - RCWD Well 139
(January 1981 to September 2015)

Recommended production for 2016-2017: 900 acre-ft
Recommended production for 2016-2017: 800 acre-ft

Appendix A
Long-Term Hydrograph and Production - RCWD Well 141
(January 1981 to September 2015)

Appendix A

Recommended production for 2016-2017: 500 acre-ft
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Long-Term Hydrograph and Production - RCWD Well 143
(January 1981 to September 2015)

Recommended production for 2016-2017: 700 acre-ft
Recommended production for 2015-2016: 400 acre-ft

Appendix A
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Long-Term Hydrograph and Production - RCWD Well 145
(January 1981 to September 2015)

Recommended production for 2016-2017: 350 acre-ft

Appendix A
Long-Term Hydrograph and Production - RCWD Well 146
(January 1981 to September 2015)

Recommended production for 2016-2017: 15 acre-ft

Appendix A
Recommended production for 2016-2017: 200 acre-ft
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Long-Term Hydrograph and Production - RCWD Well 151
(January 1981 to September 2015)

Recommended production for 2016-2017: 750 acre-ft

Appendix A
Recommended production for 2016-2017: 2,200 acre-ft
Long-Term Hydrograph and Production - RCWD Well 153
(January 1981 to September 2015)

Recommended production for 2016-2017: 1,800 acre-ft
Recommended production for 2016-2017: 600 acre-ft
Long-Term Hydrograph and Production - RCWD Well 155
(January 1981 to September 2015)

Recommended production for 2015-2016: 20 acre-ft
Long-Term Hydrograph and Production - RCWD Well 156
(January 1981 to September 2015)

Recommended production for 2016-2017: 700 acre-ft
Recommended production for 2016-2017: 1,600 acre-ft
Recommended production for 2015-2016: 1,900 acre-ft
Long-Term Hydrograph and Production - RCWD Well 201
(January 1981 to September 2015)

Recommended production for 2016-2017: 0 acre-ft
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Long-Term Hydrograph and Production - RCWD Well 203
(January 1981 to September 2015)

Appendix A

Recommended production for 2016-2017: 550 acre-ft

Monthly Production, acre-ft

Ground Water Elevation, ft AMSL

Appendix A
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Long-Term Hydrograph and Production - RCWD Well 205
(January 1981 to September 2015)

Appendix A

Recommended production for 2016-2017: 1,600 acre-ft
Long-Term Hydrograph and Production - RCWD Well 207

Recommended production for 2016-2017: 0 acre-ft
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Long-Term Hydrograph and Production - RCWD Well 208

Appendix A

Recommended production for 2016-2017: 0 acre-ft
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Long-Term Hydrograph and Production - RCWD Well 209

Recommended production for 2016-2017: 0 acre-ft

Appendix A
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Long-Term Hydrograph and Production - RCWD Well 210
(January 1981 to September 2015)

Monthly Production, acre-ft

Ground Water Elevation, ft AMSL

Land Surface

Recommended production for 2016-2017: 600 acre-ft
Long-Term Hydrograph and Production - RCWD Well 211
(January 1981 to September 2015)

Recommended production for 2016-2017: 400 acre-ft
Long-Term Hydrograph and Production - RCWD Well 215
(January 1981 to September 2015)

Monthly Production, acre-ft

Ground Water Elevation, ft AMSL

Land Surface

Recommended production for 2016-2017: 300 acre-ft
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Long-Term Hydrograph and Production - RCWD Well 216
(January 1981 to September 2015)

Appendix A

Recommended production for 2016-2017: 0 acre-ft
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Long-Term Hydrograph and Production - RCWD Well 217
(January 1981 to September 2015)

Recommended production for 2016-2017: 700 acre-ft
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Long-Term Hydrograph and Production - RCWD Well 231
(January 1981 to September 2015)

Ground Water Elevation, ft AMSL

Monthly Production, acre-ft

Recommended production for 2016-2017: 0 acre-ft

Land Surface

Appendix A

GEOSCIENCE Support Services, Inc.
Recommended production for 2016-2017: 900 acre-ft
Recommended production for 2016-2017: 500 acre-ft
Recommended production for 2016-2017: 100 acre-ft
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Long-Term Hydrograph and Production - RCWD Well 235
(January 1981 to September 2015)

Appendix A

Recommended production for 2016-2017: 900 acre-ft
Recommended production for 2016-2017: 0 acre-ft
Long-Term Hydrograph and Production - RCWD Well 302

Recommended production for 2016-2017: 0 acre-ft
Recommended production for 2016-2017: 2,000 acre-ft
Long-Term Hydrograph and Production - RCWD Well 401

Appendix A

No Production
Long-Term Hydrograph and Production - RCWD Well 410

Appendix A

No Production

Land Surface
Long-Term Hydrograph and Production - RCWD Well 417

Monthly Production, acre-ft vs. Ground Water Elevation, ft AMSL

- No Production
- Land Surface

Appendix A
Long-Term Hydrograph and Production - RCWD Well 426

Monthly Production, acre-ft

Ground Water Elevation, ft AMSL

Land Surface

No Production

Appendix A

A - 66

GEOSCIENCE Support Services, Inc.
Long-Term Hydrograph and Production - RCWD Well 439

Monthly Production, acre-ft

Ground Water Elevation, ft AMSL

Appendix A

No Production

Land Surface
Long-Term Hydrograph and Production - RCWD Well 465

Monthly Production, acre-ft

Ground Water Elevation, ft AMLS

Land Surface

No Production
Long-Term Hydrograph and Production - RCWD Well 466

- Monthly Production, acre-ft
- Ground Water Elevation, ft AMSL

- No Production

Appendix A
Long-Term Hydrograph and Production - RCWD Well 468

Appendix A
Long-Term Hydrograph and Production - RCWD Well 492 (223)

Monthly Production, acre-ft

Ground Water Elevation, ft AMSL

Land Surface

Production

No Production

Appendix A

A - 75

GEOSCIENCE Support Services, Inc.
Long-Term Hydrograph and Production - RCWD Well 493 (107)

Appendix A

Production

No Production

Ground Water Elevation, ft AMSL

Monthly Production, acre-ft
Long-Term Hydrograph and Production - RCWD Well 494 (105)

Plot showing monthly production and ground water elevation from 1981 to 2014. The graph indicates periods of production and times when there was no production. The ground water elevation is measured in feet above mean sea level (ft AMSL).
Long-Term Hydrograph and Production - RCWD Well 495 (117)
Long-Term Hydrograph and Production - RCWD Well 497 (212)

Monthly Production, acre-ft

Ground Water Elevation, ft AMSL

Land Surface

Production

No Production

Appendix A

A - 80

GEOSCIENCE Support Services, Inc.
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Long-Term Hydrograph and Production - RCWD Well 498 (224)

Appendix A

Monthly Production, acre-ft

Ground Water Elevation, ft AMSL

Land Surface

Production

0 50 100 150 200 250 300 350 400 450 500

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000

20-Jan-16

A - 81

GEOSCIENCE Support Services, Inc.
Long-Term Hydrograph and Production - RCWD Well 499 (115)

Monthly Production, acre-ft vs. Ground Water Elevation, ft AMSL

- Production
- No Production
- Land Surface

Appendix A

Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017
Long-Term Hydrograph and Production - RCWD Well 500 (116)
Recommended production for 2016-2017: 0 acre-ft

Appendix A
Recommended production for 2016-2017: 0 acre-ft
Recommended production for 2016-2017: 0 acre-ft

Appendix A
APPENDIX B

Short-Term Hydrographs – October 2014 to September 2015
Short-Term Hydrograph - RCWD Well 101

Ground Water Elevation, ft AMSL

Appendix B
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 102

Ground Water Elevation, ft AMSL

Appendix B
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 108

Ground Water Elevation, ft AMSL

Appendix B
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 110
Short-Term Hydrograph - RCWD Well 118

Ground Water Elevation, ft AMSL

Appendix B
Short-Term Hydrograph - RCWD Well 120

Ground Water Elevation, ft AMSL

Appendix B
Short-Term Hydrograph - RCWD Well 121

Ground Water Elevation, ft AMSL

Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 122

Appendix B
Short-Term Hydrograph - RCWD Well 125
Short-Term Hydrograph - RCWD Well 126

Appendix B
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 128

No Data Available for Aug-15 and Sep-15

Appendix B
Short-Term Hydrograph - RCWD Well 129
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 130

Appendix B
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 131

Ground Water Elevation, ft AMSL

Appendix B
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 132

Ground Water Elevation, ft AMSL
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 133

Appendix B
Short-Term Hydrograph - RCWD Well 135

Ground Water Elevation, ft AMSL

Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Appendix B
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 141

Appendix B
Short-Term Hydrograph - RCWD Well 143
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 144

Ground Water Elevation, ft AMSL
Short-Term Hydrograph - RCWD Well 146
Short-Term Hydrograph - RCWD Well 151

Ground Water Elevation, ft AMSL

Appendix B
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 152

Appendix B
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 153

Ground Water Elevation, ft AMSL

Appendix B
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,140</td>
</tr>
</tbody>
</table>

Short-Term Hydrograph - RCWD Well 154
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 156

Ground Water Elevation, ft AMSL

Appendix B
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 157

Ground Water Elevation, ft AMSL

Appendix B
Short-Term Hydrograph - RCWD Well 203

Ground Water Elevation, ft AMSL

Appendix B
No Data Available for Oct-14 to Sep-15
Short-Term Hydrograph - RCWD Well 216
Short-Term Hydrograph - RCWD Well 217
Short-Term Hydrograph - RCWD Well 231

Appendix B
Short-Term Hydrograph - RCWD Well 234

Ground Water Elevation, ft AMSL

- Oct-14
- Nov-14
- Dec-14
- Jan-15
- Feb-15
- Mar-15
- Apr-15
- May-15
- Jun-15
- Jul-15
- Aug-15
- Sep-15

Appendix B
Short-Term Hydrograph - RCWD Well 235

Ground Water Elevation, ft AMSL

Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 401

No Data Available for Oct-14 to Sep-15
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 403

Ground Water Elevation, ft AMSL

Appendix B
Short-Term Hydrograph - RCWD Well 410
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 413

No Data Available for Oct-14 to Sep-15

Appendix B
No Data Available for Oct-14 to Sep-15
Short-Term Hydrograph - RCWD Well 417

Ground Water Elevation, ft AMSL

Appendix B
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 419

Appendix B
Short-Term Hydrograph - RCWD Well 421
Short-Term Hydrograph - RCWD Well 422

Ground Water Elevation, ft AMSL

Appendix B
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 426

Ground Water Elevation, ft AMSL

Appendix B
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 429

Appendix B
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 433

Ground Water Elevation, ft AMSL

Appendix B
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 434
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 435

Ground Water Elevation, ft AMSL

Appendix B
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 439

Appendix B
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 444

Ground Water Elevation, ft AMSL

Appendix B
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 446

Ground Water Elevation, ft AMSL

Appendix B
Short-Term Hydrograph - RCWD Well 447
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 448

Appendix B
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 450

Ground Water Elevation, ft AMSL

Appendix B
Short-Term Hydrograph - RCWD Well 452

Ground Water Elevation, ft AMSL

Appendix B
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 453

Appendix B
Short-Term Hydrograph - RCWD Well 455

Ground Water Elevation, ft AMSL

Appendix B
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 460

Ground Water Elevation, ft AMSL

Appendix B
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 461 (142)

Appendix B
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 463 (206)
Short-Term Hydrograph - RCWD Well 464 (213)
Short-Term Hydrograph - RCWD Well 467
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 468 (222)
Short-Term Hydrograph - RCWD Well 473

Ground Water Elevation, ft AMSL

Appendix B
Short-Term Hydrograph - RCWD Well 474
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 476

Ground Water Elevation, ft AMSL

Appendix B
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 483
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 485

Ground Water Elevation, ft AMSL

October 2014 to September 2015

Appendix B
Short-Term Hydrograph - RCWD Well 487

Appendix B
Short-Term Hydrograph - RCWD Well 488
Appendix B

Short-Term Hydrograph - RCWD Well 489

Ground Water Elevation, ft AMSL

Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 490

Ground Water Elevation, ft AMSL

Appendix B
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 492 (223)

Appendix B
Short-Term Hydrograph - RCWD Well 495 (117)
Short-Term Hydrograph - RCWD Well 499 (115)
Short-Term Hydrograph - RCWD Well 506 (201)
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 507 (207)

Ground Water Elevation, ft AMSL

Appendix B
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 508 (208)

Appendix B
Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

Short-Term Hydrograph - RCWD Well 511 (302)

Appendix B
APPENDIX C

Western Municipal Water District Wells
Long-Term Hydrographs and Production
January 1981 to September 2015
Long-Term Hydrograph and Production - WMWD Holiday Well

Aquifer: Pauba
Screen Interval: 190-344 ft

Land Surface

Water Level

Production

Appendix C
Long-Term Hydrograph and Production - WMWD House Well

Aquifer: Pauba / Temecula
Screen Interval: 120-252 ft

Land Surface

Monthly Production, acre-ft

Ground Water Elevation, ft AMSL

Water Level

Production

Appendix C
Long-Term Hydrograph and Production - WMWD Lynch Well

Aquifer: Pauba
Screen Interval: 172-212 ft

Land Surface

Monthly Production, acre-ft

Ground Water Elevation, ft AMSL

No Production

Water Level

Appendix C
Long-Term Hydrograph and Production - WMWD North Well

Aquifer: Temecula
Screen Intervals: 240-460; 500-640 ft

Land Surface

Monthly Production, acre-ft

Ground Water Elevation, ft AMSL

Appendix C
Long-Term Hydrograph and Production - WMWD South Well

Aquifer: Pauba / Temecula
Screen Interval: 120-446 ft

Water Level

Production

Land Surface

Monthly Production, acre-ft

Ground Water Elevation, ft AMSL

Appendix C

Rancho California Water District
Recommended Ground Water Production
Fiscal Year July 1, 2016 through June 30, 2017

20-Jan-16

C - 5

GEOSCIENCE Support Services, Inc.
Long-Term Hydrograph and Production - WMWD Alson Well

Aquifer: Temecula
Screen Interval: 190-242 ft

Land Surface

Water Level

Production

Appendix C
Aquifer: Temecula
Screen Intervals: 300-350; 370-470; 680-790; 830-900 ft